THE NEW YORK TIMES BUILDING BENJAMIN R. BARBEN | CRAIG A. CASEY | NOCLE L. DUBOWSKI | JUSTIN M. MILLER

EXISTING CONDITIONS INTRODUCTION PROJECT GOALS

TENANT REDESIGN CORE REDESIGN

FAÇADE REDESIGN IPD/BIM LESSONS

ENVELOPE CONCLUSIONS

QUESTIONS

A CASE STUDY FOR THE USE OF IPD/BIM

FOR THE ANALYSIS AND DESIGN OF

QUESTIONS

STRUCTURE

FOUNDATIONS:

•(7) - 24" DIAMETER CAISSONS WITH 6,000 PSI •6.000 PSI SPREAD FOOTINGS EVERYWHERE ELSE

GRAVITY SYSTEM:

- •COMPOSITE STEEL SYSTEM
 - •3" METAL DECKING SPANS 10'
 - •2 1/2" N.W. CONCRETE
- •TYPICAL FLOOR-TO-FLOOR HEIGHT IS 13.75'

BUILT-UP COLUMNS:

- •30" X 30"
 - WEB PLATES VARY 7" TO 1
 - •FLANGE PLATES VARY 4" TO 2'

THE NEW YORK TIMES BUILDING BENJAMIN R. BAMEN | CAND A. CAREY | NODE L. DOROWAN | JUSTIN M. MILLES INTRODUCTION EXISTING CONDITIONS TENANT REDESIGN PROJECT GOALS CORE REDESIGN TENANT FAÇADE REDESIGN CORE

ENVELOPE

IPD/BIM LESSONS

CONCLUSIONS

QUESTIONS

CONSTRUCTION MANAGEMENT

FUNCTION: CLASS A OFFICE SPACE

FIRST FLOOR RETAIL, OPEN-AIR PAPER BIRCH GARDEN, CULTURAL CENTER & PERFORMANCE

SPACE

ASSUMED \$1 BILLION

APPROXIMATELY 1.5 MILLION SQUARE FEET

CORE & SHELL: AMEC

NYT Interiors: Turner Construction

SUMMARY SCHEDULE

DURATIONS	DATE	DURATIONS	DATE
Start of Construction	12/1/2003	Concrete Fill / Tower Topout	8/23/2006
Start Demolition	12/1/2003	Curtainwall - Poduim Finish	3/13/2006
Finish Demolition	6/30/2004	Curtainwall - Tower	1/3/2007
Start of Excavation Foundations	4/19/2004	MP - Start	5/3/2004
Finish Foundations	9/12/2005	MP - Finish	4/23/2007
Start of Steel Erection (Tower)	5/2/2005	Electrical - Start	8/19/2005
Start of Steel Erection (Podium)	7/26/2005	Electrical - Finish	4/12/2007
Steel Top Out	5/24/2006	Interior Finishes - Start 10/3/2	
Mobilize Podium Concrete	10/24/2005	Interior Finishes - Finish	6/20/2007
Podium Concrete Finished	12/6/2005	Remove Tower Cranes 7/25/2006	
Mobilize Tower Concrete	7/18/2005	Remove Hoists 5/31/2	
Pour Concrete 51,52	7/24/2006	Project Closeout 6/20/20	

ENVELOPE

IPD/BIM LESSONS

CONCLUSIONS QUESTIONS

TENANT

DECREASE THE BUILDING'S LIFE CYCLE COST BY

Reduce Quantity of Structural Me Accurate Revit Model Creation Create a RAM Model to Aid in Design Design a Constructable Concrete-Steel Connection
Lighting/Electrical Decrease Lighting Energy Consumption Share Lighting Power Density with Mechanical Loads

Maintained Architect's Vision Shorten/Maintain Construction Schedule Use Revit Model for Take-off

Concrete Only Core Accurate Revit Model Creation

Accurate Revit Model Creation

Shorten/Maintain Construction Schedule Use Revit Model for Take-off

Create ETABS Model to Maintain Dynamic Properties

CONCLUSIONS

QUESTIONS

ENVELOPE

OVERVIEW

ENVELOPE

OPTIMIZE THE BUILDING ENVELOPE TO IMPROVE THE BUILDING ENERGY CONSUMPTION BY ANALYZING:

- ENVELOPE THERMAL PERFORMANCE
- DAYLIGHT HARVESTING CAPABILITIES
- RENEWABLE ENERGY INCORPORATION
- Building Construction Cost

faintain the Original Architecture including the Cantalevered Bays

Accurate Revit Model Creation

Use Daysim and Excel to Calculate Energy Savings using DA Accurate Revit Model Creation of Shading Device

Use Ecotect to Obtain Annual Incident Solar Radiation on Façade

Exterior Lighting Design that Reduces Energy Consumption

Use Radiance to Produce Renderings of Façade

Utilize a BIM compatible software (IES<VE>) for energy simulations

CONCLUSIONS QUESTIONS

RENT CHANGES

APPLIED COST DATA TO FCRC SPACES

AVG: \$60.58 /FT²/YEAR

ORIGINAL: \$1,279,000 /FLOOR/YEAR

PROPOSED: \$1,409,000 /FLOOR/YEAR

AVERAGE DIFFERENCE: \$130,000 /FLOOR/YEAF \$2,846,736.54 /Year Additionally

PROPOSED FCRC 32ND FLOOR

INTERIOR LIGHTING DESIGN SUMMARY

DESIGN SUMMARY	ORIGINAL DESIGN	DESIGN CRITERIA	Proposed Redesign
TARGET ILLUMINANCE (FC)	50	30	30
LIGHTING POWER DENSITY (W/FT ²)	1.07	1.1	0.469
ENERGY SAVINGS (\$/FT ² /YEAR)	\$0.02	-	\$0.41
TOTAL SAVINGS (\$/YEAR)	\$21,976.65	-	\$462,242.21

REDESIGN OF CORE

•1ST – 30TH FLOOR:
•10,000 PSI
•30" THICK SHEAR WALLS
•30X44 COUPLING BEAMS, 10FT LONG (TYP.)

24ST 40TH FLOOR

•8.000 PSI

FINAL DESIGN:

•24" THICK SHEAR WALLS

24X44 COUPLING BEAMS, 10FT LONG (TYP.)

•41ST – 52ND FLOOR:

•6,000 PSI

•18" THICK SHEAR WALLS

•18X44 Coupling Beams, 10ft long (TYP.

DRIFT & DYNAMIC ANALYSIS SUMMARY		
		TARGET
MEAN HOURLY ROOF WIND SPEED	63.3 MPH	
H/B	4.63	
T _L (WE)	6.46 SEC	6.25 SEC
T _D (NS)	6.64 SEC	6.75 SEC
T _⊖	4.41 SEC	
G _P	3.75	
$A_D(Z)$	1.86 MILLI-G	
$A_L(Z)$	2.72 MILLI-G	
BA _⊙ /SQRT(2)	2.09 MILLI-G	
A _R	3.90 MILLI-G	
A _{PEAK}	14.6 MILLI-G	15 – 27 MILLI-G *
ROOF TO BASE DISPL. RATIO	H/690	H/450

^{*} GRIFFIS LAWRENCE G., "SERVICEABILITY LIMIT STATES UNDER WIND LOAD" ENGINEERING JOURNAL/AMERICAN INSTITUTION OF STEEL CONSTRUCTION, 1993

CONSTRUCTION IMPLICATIONS

STEEL

BUILT UP COLUMNS

LARGE FRAMING MEMBERS

OUTRIGGER SYSTEM IN PLACE

CONCRETE

30" - 24" - 18" THICKNESS

44" DEEP COUPLING BEAMS

DIFFERENCE

CONCRETE TAKES UP PLACE OF FRAMING

ADDITIONAL SAVINGS FROM OTHER REDUCTIONS

EXTERIOR COLUMN "KNUCKLES" ELIMINATED

X-BRACING ELIMINATED

OUTRIGGERS ELIMINATED

CONSTRUCTION IMPLICATIONS

SCHEDULE CHANGES

2 MONTH EARLIER START FOR TOWER

2 MONTH LONGER CRANE DURATION

APPROX. \$60,000.00 FOR CRANES AND CREW INCREASE

TEMPORARY HEAT FOR CORE DURING WINTER MONTHS

ADDITIONAL \$3,000,000.00 FOR TEMPORARY HEAT

CONCLUSIONS

QUESTIONS

FAÇADE LIGHTING

CONSTRUCTION IMPLICATIONS

BIM FOR PERFORMANCE MODELING REVIT → IES<VE>

REVIT → ECOTECT ANALYSIS

SOFTWARE INTEROPERABILITY

GREEN BUILDING XML (GBXML)

INFORMATION TRANSFER

BUILDING GEOMETRY

WALL CONSTRUCTION

SHADING DEVICES

WORKFLOW "BEST PRACTICES"

SIMPLIFICATION

- SIMPLIFICATION

ADVANTAGES

VISUALIZATION

DISADVANTAGES

CAREELII MODEL INSPECTION

I IME-CONSUMING TO ELIMINATE ERRORS

HADING SYSTEM DID NOT EXPORT

NO REVERSE TRANSFER TO BIM MODEL

PV ANALYSIS SUMMARY

FAÇADE SECTION	Coverage Area (ft²)	PRODUCTION KWH/YEAR	Соѕт
EAST FAÇADE FLOORS:5-17	3,575	10,216.53	\$214,500
EAST FAÇADE FLOORS:18-54	10,175	207,971.7	\$610,500
South Façade FLOORS:18-54	10,175	381,281.5	\$610,500
WEST FAÇADE FLOORS:8-54	12,925	484,330.5	\$775,500

PRODUCTION CALCULATION INPUT		
COST/FT ²	\$60.00	
CONVERSION EFFICIENCY	16%	
INVERTING EFFICIENCY	95%	

EXTERIOR LIGHTING DESIGN SUMMARY

DESIGN SUMMARY	ORIGINAL DESIGN	ASHRAE ALLOWABLE	Proposed Redesign
WATTAGE	15,710	24,390	3,898
REDUCTION FROM ALLOWABLE	35.59%	-	84.02%
ENERGY SAVINGS (\$/YEAR)	\$6,082.94	-	\$14,360.79

ASSUMING 8 HOURS OF USE PER NIG

CONSTRUCTION IMPLICATIONS

TAKE OFFS

ENVELOPE AREA TAKE-OFFS FROM MODE

ORIGINAL

APPLY COST DATA TO MODELED FAÇADE FAMILIE

CALCULATE NUMBER OF RODS

PROPOSED LOUVERS AND OPERABLE WINDOWS

APPLY COST DATA TO MODELED LOUVERS AND OPERABLE

WINDOW FAMILIES

DIFFERENCES

ORIGINAL CURTAIN WALL: \$80,509,220.00

CERAMIC RODS: \$3,023,640.00

Non-operable Panels: \$77,156,312.50

OPERABLE PANELS: \$7,715,812.50

LOUVERS: \$11,563,300.00

